Hansong Tang, Associate Professor Department of Civil Engineering, City College The City University of New York

Group  Research  Teaching  Activity 
Contact Information :
Department of Civil Engineering The City College of New York 160 Convent Avenue New York, NY 10031
Steinman Hall Room T127 Voice: 2126508006 Fax: 2126506965 Email: htang at ccny.cuny.edu 

1. Research
Fluid mechanics, numerical methods, and computational physics. Areas include:
2. Teaching
3. Education
· Ph.D., 2001, Georgia Institute of Technology, Environmental Fluid Mechanics (Minor: Mathematics) · D.Sc., 1993, Peking University, Computational Mathematics · M. S., 1986, Wuhan University of Hydraulic and Electrical Engineering, Computational Hydrodynamics · B.S., 1983, Wuhan University of Hydraulic and Electrical Engineering, Mechanical/Electric Eng.
4. Experience
· 2007  Present City College of New York, Assistant Professor, Associate Professor · 2006  2007 Naval Research Lab, Stennis Space Center, NRC Associate · 2004  2005 Pacific Northwest National Laboratory / Battelle, Scientist · 2001  2004 Stevens Institute of Technology, Research Scientist · 1993  1998 Beijing University of Aeronautics and Astronautics, Postdoc, Associate Professor · 1986  1990 Changsha Communication Institute, Lecturer
5. Professional Society Memberships
· American Society of Civil Engineers (ASCE) · American Geophysical Union (AGU) · American Physics Society (APS) · Society of Industry and Applied Mathematics (SIAM)
6. Professional Activities
· Handling editor, Phyiscs Open, Elsevier (2019  present ) · Associate editor, Communications in Nonlinear Science and Numerical Simulation, Elsevier (2010 2020) · Associate editor, Journal of Hydrodynamics, Elsevier, (1999  present) · A Guess editor, Special Issue "Multiscale, Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches": J. Marine Scienec and Engineering, MDPI (2019  2020) · Organizing Commitee, Estuarine and Coastal Modeling Conferencee (2016  present) · Panelists for NSF, DHS, DOE, etc.
7. Awards and Honors
· 2012 "Certificate of Recoginition" for dedication to engineering research and education, School of Engineering, CCNY · 2006 Awardee of National Research Council’s Research Associateship Program · 2001 Award of 19971999 Excellent Hydrodynamics Paper, Prof. Zhou Peiyuan Science Foundation · 1992 Guang HuaAntai Scholarship, Peking University
8. Sponsors
· NSF, 2013 (CMMI), 2013 (CMMI), 2014 (CBET, Wksp), 2015 (DMS, Wksp), 2016 (DMS), 2021 (DMS), 2022 (CMMI) · NASA, 2012 · UTRC, 2011, 2016 · NOAACREST, 2011 · NJDOT/UTRC, 2010 · Changsha University Science and Technology, 2010 · PSC CUNY for 2008, 2009 and 2010 · US National Research Council and Naval Research Lab, 2007
9. Publications9.1 Peer reviewed journals [J59] BD, YW Xie, HS Tang, H Tao, CB Jiang Numerical study of erosion and deposition of sandy beach in presence of Breakwater with spill hole, submitted, 2022. [J58] B Deng, W Zhang, HS Tang, CB Jiang, XJ Liu. An experimental study on boredriven hydrodynamic process, beach profile, and sand migration in swash zone. Submitted, 2022. [J57] YL Cai, A Agrawal, HS Tang, KE Qu. Effects of connection on behavior of bridge deck under solitary waves, submitted, 2022. [J56] WB Dong, HS Tang. Convergence analysis of waveform relaxation method to compute coupled advectiondiffusionreaction equations, submitted, 2022. https://arxiv.org/abs/2205.01708. [J55] WB Dong, YJ Liu, HS Tang. Accuracy enhancing interface treatment algorithm: the back and forth error compensation and correction method, J. Scientific Compting, submitted, 2021. [J54] SS Li, GD Li, HS Tang, WB Dong, Duo Jiang Comparative analysis of the discharge capacity of four typical piano key weirs. Submitted 2021. [J53] WB Dong, HS Tang, YJ Liu, Convergence analysis for computation of coupled advectiondiffusionreaction problems, Applied Mathematics and Computation, 420(2022), 126876. [J52] HS Tang, CR Nichols, LD Wright, D Resio. Modeling multiscale and multiphysics coastal ocean processes: A discussion on necessity, status, and advances. J. Marine Sci. and Eng., 97 (2021), 105729. [J51] HS Tang, L Li, M Grossberg, YJ Liu, YM Jia, SS Li, WB Dong. An exploratory study on machine learning to couple numerical solutions of partial differential equations, Comm. Nonlinear Sciences & Numerical Simulations, 97 (2021), 105729. [J50] B. Deng, M. F. Wang, W. Yao, H. S. Tang, C. B. Jiang, Laboratory and numerical investigations on characteristics of air bubbles in plunging breakers on beach, Ocean Eng., 224 (2021), 108728. [J49] K. Qu, W. Yao, H.S. Tang, A. Agrawal, G. Shields, S. IJy Chien, S. Gurung, Y. Imam, I. Chiodi, Extreme storms surge and waves and vulnerability of coastal bridges in New York City metropolitan region: An assessment based on Hurricane Sandy, Natural Hazards, 105 (2021), 2697–2734. [J48] H. S. Tang, R. Haynes, and G. Houzeaux, Review of domain decomposition methods for simulation of fluid flows: Concepts, algorithms, and applications, Archives of Computational Methods in Engineering, 28 (2021), 841873. [J47] Y. Cai, A. Agrawal, K. Qu, and H. S. Tang, Closure to “Numerical Investigation of Connection Forces of a Coastal Bridge Deck Impacted by Solitary Waves” by Yalong Cai, A. Agrawal, Ke Qu, and H. S. Tang, J. Bridge Eng., (25) 2020. [J46] K. Qu, W.Y.Sun, H.S.Tang, B.Jiang, B.Deng, and J. Chen, Numerical study on hydrodynamic load of realworld tsunami wave at highway bridge deck using a coupled modeling system, Ocean Eng., 2019(192), 106486. [J45] K. Qu, H. S. Tang, A. Agrawal, Integration of fully 3D fluid dynamics and geophysical fluid dynamics models for multiphysics coastal ocean flows: Simulation of local complex freesurface phenomena, Ocean Modelling, 135 (2019), 1430. [J44] F. Zhang, H. S. Tang, J. Cheng, T. Liu, A simplified artificial compressibility flux for the discontinuous Galerkin solution of the incompressible NavierStokes equations, Comm. Comput. Phys., 2019(25), 9881009. [J43] L. Thomas, H. S. Tang, D. M. Kalyon, S. Aktas, J. D. Arthur, J. Blotevogel, J. W. Carey, A. Filshill, P. C. Fu, G. Hsuan, T. Hu, D. Soeder, S. Shah, R. D. Vidic, M. H. Young, Toward better hydraulic fracturing fluids and their application in energy production: A review of sustainable technologies and reduction of potential environmental impacts, J. Petroleum Sci. and Eng., 173 (2019), 793803. [J42] H. S. Tang, W. B. Dong, and A.Agrawal, A phenomenon of artificial odd–even grid oscillation and its presence in domain decomposition computation: Algebraic analysis and numerical illustration, J. Comput. and Appl. Math. 333(2018), 404427. [J41] K Qu, H. S. Tang, A. Agrawal, Y. Cai, C. B Jiang, Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current, Appl. Ocean Research, 75(2018), 100116. [J40] B. Li, X. Zhang, H. S.Tang, and R. Tsubaki, Influence of deflection angles on flow behaviours in open channel bends, J. Mountain Science, 15 (2018), 2292–2306. [J39] Y. L. Cai, A. Agrawal, K. Qu, and H. S. Tang, Numerical investigation of connection forces of a coastal bridge deck impacted by solitary waves, ASCE J. Bridge Eng., 23(2018), 04017108. [J38] K. Qu, H. S. Tang, A. Agrawal, and Y. L. Cai, Hydrodynamic effects of solitary waves impinging on a bridge deck with air vents, ASCE J. Bridge Eng., 22(2017), 04017024. [J37] K. Qu, H. S. Tang, A. Agrawal, C. B. Jiang, and B. Deng, Evaluation of SIFOMFVCOM system for highfidelity simulation of smallscale coastal ocean flows. J. Hydrodynamics, 28(2016), 994–1002. [J36] A. A. Alleyne, S. Xanthos, K. Ramalingam, K. Temel, H. Li, and H. S. Tang, Numerical investigation on flow generated by INVENT mixer in fullscale wastewater stirred tank. Engineering Applications of Computational Fluid Mechanics, 8(2014), 503517. [J35] H. S. Tang, K. Qu, and X. G. Wu, An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows. J. Comput. Phys., 273(2014), 548571. [J34] H. S. Tang, K. Qu, G.Q. Chen, S. Kraatz, N. Aboobaker, and C.B. Jiang, Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews, 39(2014), 412425. [J33] H. S. Tang, S. Kraatz, K. Qu, G.Q. Chen, N. Aboobaker, and C.B. Jiang, Highresolution survey of tidal energy towards power generation and influence of sealevelrise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews, 32(2014), 960982. [J32] J. Meng, G.Q. Chen, L. Shao, J. S. Li, H. S. Tang, T. Hayat, A. Alsaedi, and F. Alsaadi, Virtual water accounting for building: Case study for Etown, Beijing. Journal of Cleaner Production. 68(2014), 7–15. [J31] C. B. Jiang, B. Deng, S. X. Hu, and H. S. Tang, Numerical investigation of swash zone hydrodynamics. Science China Technological Sciences. 56(2013), 30933103 [J30] Z. M. Chen, B. Chen, and H. S. Tang, Energy economics and policy. The Scientific World Journal, Volume: 2013 Pages: 536517 DOI: 10.1155/2013/536517. [J29] H. S. Tang, S. IJy Chien, M. Temimi, K. Qu, L. H. Zhao, C. A. Blain, and S. Kraatz, Vulnerability of population and transportation systems at east bank of Delaware Bay to coastal flooding in climate change conditions. Natural Hazards, 69(2013), 141163. [J28] H. S. Tang, S. Kraatz, X. G. Wu, W. L. Cheng, K. Qu, and J. Polly, Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment. Ocean Engineering, 62(2013), 5667. [J27] J. Y. Wang, H. S. Tang, and H. W. Fang, A fullycoupled method to simulate wave, current, and morphology system, Comm. Nonlinear Sciences & Numerical Simulations, 18(2013), 1694–1709. [J26] L. Z. Zhang, H. S. Tang, J. P. Y. Maa, and G. Q. Chen, Exact solutions and analysis for a class of extended Stokes’ problems. Discontinuity, Nonlinearity, and Complexity, 2(2013), 85–102. (Full Text PDF) [J25] H. S. Tang, L.Z. Zhang, J.P.Y. Maa, H. Li, C.B. Jiang, and R. Hussain, Fluid driven by tangential velocity and shear stress: mathematical analysis, numerical experiment, and implication to surface flow. Mathematical Problems in Engineering, Volume 2013 (2013), Article ID 353785. [J24] H. S. Tang, Analysis of creeping channel flows of compressible fluids subject to wall slip. Rheol. Acta, 51(2012):421–439. [J23] C. B. Jiang, J. Chen, H. S. Tang, and Y. Z. Cheng, Hydrodynamic Processes on Beach: Wave Breaking, Uprush, and Backwash. Commun Nonlinear Sci Numer Simulat. 16(2011), 31263139. [J22] Z. Wu, Z. Li, L. Zeng, L. Shao, H. S. Tang, Q. Yang, and G. Q. Chen, Environmental dispersivity in freewatersurfaceeffect dominated wetland: multiscale analysis. Front. Environ. Sci. Engin. China. DOI 10.1007/s1178301103119. 2011. [J21] L. Zeng, G. Q. Chen, H. S. Tang, and Z. Wu, Environmental dispersion in wetland flow, Commun Nonlinear Sci Numer Simulat 16(2011) 206–215. [J20] Z. M. Chen, X. H. Xia, H. S. Tang, S. C. Li, and Y. Deng, Emergy based ecological assessment of constructed wetland for municipal wastewater treatment: methodology and application to the Beijing Wetland. Journal of Environmental Informatics. 15(2010), 6273. [J19] X. G. Wu and H. S. Tang, Coupling of CFD model and FVCOM to predict smallscale coastal flows, J. Hydrodynamics, ser. B, 22(2010), 284289. [J18] H. S. Tang, T. R. Keen, and Khanbilvardi, A modelcoupling framework for nearshore waves, currents, sediment transport, and seabed morphology, Comm. Nonlinear Sciences & Numerical Simulations, 14(2009), 29352947. [J17] H. S. Tang and T. R. Keen, Analytical solutions for openchannel temperature response to unsteady thermal discharge and boundary heating, ASCE J. Hydr. Eng., 135(2009), 327339. [J16] H. S. Tang, J. Paik, F. Sotiropoulos, and T. Khangaokar, Threedimensional numerical modeling of initial mixing of thermal discharges at reallife configurations, ASCE J. Hydr. Eng., 134(2008), 12101224. [J15] H. S. Tang and D. M. Kalyon, Timedependent tube flow of compressible suspensions subject to pressure dependent wall slip: Ramifications on development of flow instabilities, J. Rheology, 52(2008), 10691090. [J14] H. S. Tang and D. M. Kalyon, Unsteady circular tube flow of compressible polymetric liquids subject to pressuredependent wall slip, J. Rheology, 52(2008), 507525. [J13] H. S. Tang and F. Sotiropoulos, Fractional step artificial compressibility method for NavierStokes equations, Computers & Fluids. 36(2007), 974986. [J12] D. M. Kalyon and H. S. Tang, Inverse problem solution of squeeze flow for parameters of generalized Newtonian fluid and wall slip, J. NonNewtonian Fluid Mech., 143(2007), 133140. [J11] H. S. Tang, Study on a grid interface algorithm for solutions of incompressible NavierStokes equations, Computers & Fluids. 35(2006), 13721383. [J10] D. M. Kalyon, H. S. Tang, and B. Karuv, Squeeze flow rheometry for rheological characterization of energetic formulations, J. Energetic Materials, 24(2006), 215222. [J9] Z. K. Zhang, H. S. Tang, Numerical simulation of flow over delta wing with trailing‐edge jet at high angle of attack, Int. J. Numer. Meth. Eng., 59(2004), 20472063. [J8] H. S. Tang and D. M. Kalyon, Estimation of the parameters of HerschelBulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers, Rheol. Acta, 43(2004), 8088. [J7] H. S. Tang, C. Jones, and F. Sotiropoulos, An overset grid method for 3D unsteady incompressible flows, J. Comput. Phys., 191(2003), 567600. [J6] H. S. Tang and T. Zhou, On nonconservative algorithms for grid interfaces, SIAM J. Numer. Anal., 37(1999), 173193. [J5] H. S. Tang and F. Sotiropoulos, A secondorder Godunov method for wave problems in coupled solidwatergas systems, J. Comput. Phys., 151(1999), 790815. [J4] H. S. Tang, A secondorder Godunov method for computing solutions to wave motion and fracture problems in a hydroelastoplastic medium. Chinese J. Numer. Math. Appl., 21(1999), 69—82.(Full Text PDF) [J3] H. S. Tang, D. L. Zhang, and C. H. Lee, Analysis and modification on CIP method for hyperbolic equations, Comput. Fluid Dyn. J., 6(1997), 227236. (Full Text PDF) [J2] H. S. Tang and D. Huang, A secondorder accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones, J. Comput. Phys, 128(1996), 301318. [J1] H. S. Tang, D. L. Zhang, and C. H. Lee, Comments on algorithms for grid interfaces in simulating Euler flows, Comm. Nonlinear Science and Numerical Simulation, 1(1996), 5054.
Journal papers in Chinese (over 10)
9.2. Book Chapters [B5] W. B. Dong, H. S. Tang, and Y. J. Liu, Coupling of NavierStokes Equations and Their HydrostaticVersions and Simulation of Riverbend Flow. In: Brenner, S.C., et al. (eds). Domain Decomposition Methods in Science and Engineering, XXVI, DD2020. Lecture Notes in Computational Science and Engineering. Ed. Springer. 531538, vol 145. Springer, 2022. [B4] H. S.Tang, Y. J. Liu. Coupling of NavierStokes Equations and Their Hydrostatic Versions for Ocean Flows: A Discussion on Algorithm and Implementation. In: Haynes R., et al. (eds) Domain Decomposition Methods in Science and Engineering XXV. DD 2018. Lecture Notes in Computational Science and Engineering, 236333, vol 138. Springer, 2020. [B3] Bahadir Karuv, Seda Aktas, Jing He, Hansong Tang, Constance M Murphy, Suzanne E Prickett, Dilhan Kalyon, Rheological behavior of energetic suspensions gels, Chpt. 8, Energetic Materials: Advanced Processing Technologies for NextGeneration Materials, CRC Press, 2017. [B2] H.S. Tang, K. Qu, X.G. Wu, and Z.K. Zhang, Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: A numerical experiment on a transient sill flow. In: Dickopf, T., et al. (eds) Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering, 407414, vol 104. Springer, 2016. [B1] H. S. Tang and T. Keen (2011). Hybrid model approaches to predict multiscale and multiphysics coastal hydrodynamic and sediment transport processes, Sediment Transport, Chpt. 4, pp7190, Silvia Susana Ginsberg (Ed.), ISBN: 9789533071893, InTech. Austria, 2011.
9.3 Peer reviewed conference papers and published research reports [C27] E. J. Zhao, B. Shi, H. S. Tang, W. X. Huai, A modeling study of hydrodynamics at submarine pipelines in tidal currents. Proceedings of 2nd Conf. of Global Chinese Scholars on Hydrodynamics, 862867. Ed. Wu Yousheng, Dai Shiqiang, Yan Kai. Wuxi, China. Nov. 1114, 2016, China Ocean Press. [C26] H. Zou, H. S. Tang, C. H. Lee, J. Q. Xia, Y. Zhou, Towards highfidelity simulation of tidalpowerextraction flow with realistic turbine and coastal setting. Proceedings of 2nd Conf. of Global Chinese Scholars on Hydrodynamics, 496501, Ed. Wu Yousheng, Dai Shiqiang, Yan Kai. Wuxi, China. Nov. 1114, 2016, China Ocean Press. [C25] K. Qu, H. S. Tang, A. Agrawal, C. B. Jiang, and B. Deng, Evaluation of SIFOMFVCOM system for highfidelity simulation of smallscale coastal ocean flows, Proceedings of 2nd Conf. of Global Chinese Scholars on Hydrodynamics, 877884, Ed. Wu Yousheng, Dai Shiqiang, Yan Kai. Wuxi, China. Nov. 1114, 2016, China Ocean Press. [C24] Y.Q. Tian, Z. K. Zhang, Q. Zhai, K. Qu, H. S. Tang. Numerical Prediction of the Minimum Height of Roughness Strip for Artificial Transition on Swept Wings. 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, San Diego, California, 4 8 Jan. 2016. AIAA 20161117. [C23] W. Zhou, Z. K. Zhang, K. Qu, H. S. Tang. Numerical Investigation of Transonic Airfoil Buffet Suppression. 53rd AIAA Aerospace Science Meeting, Kissimmee, Florida, 5 9 Jan. 2015. AIAA 20150068. [C22] H. S. Tang and A. Agrawal. RAPID: Collection of Data on Flood and Hydrodynamic Impact on Coastal Infrastructure in the New York City Metropolitan Region during the Hurricane Sandy, Final project report, NSF Award Number: CMMI # 1313877. 2014. [C21] H.S. Tang, K. Qu, S. Kraatz, W.L. Cheng. Potential Sites for Tidal Power in New Jersey. Final project report. Project NJDOT 201015 and RFCUNY 491112121. 2014. [C20] H. S. Tang, K. Qu, and X. G. Wu, A domain decomposition method for coupling CFD and GFD models to simulate coastal ocean flows. 22nd International Conference on Domain Decomposition Methods (DD22), Lugano, Switzerland, Sept., 2013. [C19] T. T. Cheng, Z. K. Zhang, K. Qu, and H. S. Tang. Numerical study of fixed artificial transition and the minimum height of roughness strip for it. 21st AIAA Computational Fluid Dynamics Conferentang. June 2427, 2013, San Diego, CA. AIAA 20133093. [C18] W. Zhou, Z. K. Zhang, K. Qu and and H. S. Tang. Numerical investigation of shock oscillation over airfoils at transonic speeds influenced by trailing edge jet. 21st AIAA Computational Fluid Dynamics Conferentang. June 2427, 2013, San Diego, CA. AIAA 20132952. [C17] H. S. Tang, Steven IJy Chien, M. Temimi, K. Qu, L. H. Zhao, C. A. Blain, and S. Kraatz, Prediction of coastal flooding and evacuation demand estimation considering climate change, Proc. Transportation Research Board 92^{nd} Annual Meeting, 2013. [C16] D. M. Kalyon, H. Gevgilili, and H. S. Tang, Squeeze flow rheometry, Proc. AIChE Annual Meeting, Oct. 28 Nov. 3, 2012, Pittsburgh, PA. [C15] K. Qu, Z. K. Zhang, S. Niu, C. Gao H. S. Tang, and S. J. Luo. Determination of transonic wind tunnel geometry and studies on wall interference by numerical simulation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA paper 20120982. [C14] Z. K. Zhang, Y. Ye, K. Qu, H. S. Tang, and S. J. Luo. Determination of clustering and switching factors in parabolic grid generation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA paper 2012161. [C13] B. Deng, C. B. Jiang, L. P. Zhao, and H. S. Tang. ThreeDimensional Numerical Study on Bore Driven Swash. Proc. Sixth International Conference on Asian and Pacific Coasts (APAC 2011), Hong Kong, 2011. (Full Text PDF) [C12] X. B. Zhang, L. Zhang, M. Q. Feng, H. S. Tang, Analysis of influence factors on sludge wall slip. Int. Conf. Computer & Management, Wuhan, China, 2011. [C11] H. S. Tang and S. Skraatz, Performance Indicators for Marine Hydrokinetic Energy Generation Systems. Proc. ASCE 2011 Structures Congress, D. Ames, T. L. Droessler, and M. Hoit (Ed.), 12361245. (Full Text PDF) [C10] H. S. Tang and X. G. Wu, Multiscale coastal flow simulation using coupled CFD and GFD models. Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada. David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.). 2010. (Full Text PDF) [C9] Z. Hao, T. Min, M. Q. Feng, H. S. Tang, Parameter inversion model for two dimensional parabolic equation using the LevenbergMarquardt method. Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada. David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.). 2010. [C8] M. Malik, H. S. Tang, D. M. Kalyon. Development of flow instabilities during extrusion of polymer melts and polymeric suspensions: importance of the use of pressuredependent wall slip condition. Proc. the Polymer Processing Society Annual Meeting, July 48, 2010 Banff, Alberta, Canada. [C7] D. M. Kalyon, H. Gevgilili, H. S. Tang, M. Malik, A. Mirza, E. Deminkol, B. Greenberg, D. Park, K. Jasinkiewicz, and J. M. Mahon, “Development of coextrusion technologies for green manufacture of energetics”, ARAETCR06001, ADE403 081, Armament Research, Development and Engineering Center, 2006. [C6] “Detailed mixing zone study for Fort James – Wauna Mill”, PNWD, 3595, Pacific Northwest National Lab, 2005. [C5] H. S. Tang and D. M. Kalyon, “Timedependent development of flow instability of nonNewtonian fluid and its suspensions with rigid particles”, Proc. AICHE Ann Meeting, Austin Texas, 2004. [C4] H. S. Tang and T. Zhou, Why nonconservative interface algorithms may be applicable: analysis for Chimera grids, Proc. 7th Int. Symp on Computational Fluid Dynamics, Int. Academic Pub. eds. F. G. Zhuang, 1997, 336341. (Full Text PDF) [C3] H. S. Tang and Tie Zhou, On nonconservation conditions at grid interfaces, Research Report of Sch of Math, Peking Univ., 62, 1996. [C2] H. S. Tang and D. Huang, Occurrence and vanishment of unsteady cavitation in water shock tube and their numerical modeling, Proc. 2nd Int. Conf. Nonlinear Mechanics, Peking Univ. Press, eds. W. Z. Chien, 1993, 417420. [C1] H. S. Tang and B. M Zheng, Finite element computation of temperature difference jet with kepsilon turbulence model, Environmental Hydraulics, A. A. Balkema Pub., Rotterdam, 1991, 217222. 