Civil Engineering Data Analysis (CE264)

Course: Semester: Time: Location:	CE 264 (Data Analysis for Civil Engineering Applications) Fall 2009 Lecture on Mondays & Wednesdays 12:30 – 1:20 PM, Lab on Mondays 2:00 – 4:50 PM Lecture in room SH-21 & Lab in room MR-506		
Instructor: Office: Office Hours: Email:	Prof. Hansong Tang Steinman Hall-CCNY, T-185, Tel: 212-650-8006 Wed, Thur, 2:00 – 4:00 PM <u>htang@ccny.cuny.edu</u>		
Course Description:	Role of statistics and probability in civil engineering. Measurability and variability. Data collection. Descriptive analysis. Presentation of data in the context of civil engineering. Numerical descriptive statistics. Probability distributions and their application to civil engineering. Introduction to inferential statistics. Applications of civil engineering quality control. Linear correlation and regression analysis.		
Software:	Microsoft Excel or Matlab		
Textbooks:	 Probability Concepts in Engineering (Emphasis on Applications to Civil and Environmental Engineering), by <i>Alfredo H-S. Ang and Wilson H.</i> <i>Tang</i>; Wiley. 		
	 Any introductory level of statistics and probability book will be useful for this class. Following are a few reference books that you can use: Applied Statistics for Engineers and Scientists; <i>David M. Levine, Patricia P. Ramsey, and Robert K. Smidt</i>; Prentice Hall. (Optional) Probability and Statistics for Engineers; <i>Irwin Miller, John E. Freund, & Richard A. Johnson;</i> Prentice Hall. (Optional) Basic Engineering Data Collection and Analysis; <i>Stephen B. Vardeman and J. Marcus Jobe;</i> Duxbury Thomson Learning. (Optional) Guide to Microsoft Excel 2002 for Scientists and Engineer (Third Edition), by <i>Bernard V. Liengme</i>; Butterworth-Heinemann. (Optional) 		
Communication:	Class communications, such as posting the assignments and submitting their solutions, will be through the "blackboard". Therefore, you need to obtain a user ID and a password to the "blackboard".		
Grading:	 20% Homework (10% homework & 10% lab assignments) 40% Midterm Exams (30% Exams, 10% Class Quizzes) 10% Project 30% Final Exam 		

Weeks	Days	Topics	Chapters	
1	Mon. (Aug. 31)	Introduction to Statistics,		
	Wed. (Sept. 2)	Date Descriptors	1	
	Lab.	Introduction to Excel (calculations & graphs)		
2	Mon. (Sept. 7)	Labor day		
	Wed. (Sept. 9)	Fundamental of Probability Models	2	
	Lab.	Fundamental of Probability Models		
3	Mon. (Sept. 14)	Fundamental of Probability Models		
	Wed. (Sept. 16)	Analytical Models for Random Variables	2 & 3	
	Lab.	Fundamental of Probability Models		
4	Mon. (Sept. 21)	Holiday		
	Wed. (Sept. 23)	Continuous Probability Distributions	3	
	Lab.	Continuous Probability Distributions	Exam 1	
5	Mon. (Sept. 28)	No class	3	
	Wed. (Sept. 30)	Continuous Probability Distributions		
	Lab.	Continuous Probability Distributions		
6	Mon. (Oct. 5)	Continuous Probability Distributions	3	
	Wed. (Oct. 7)	Discrete Probability Distributions		
	Lab.	Continuous Probability Distributions		
7	Mon. (Oct. 12)	Columbus day		
	Wed. (Oct. 14)	Discrete Probability Distributions	3	
	Lab.	Discrete Probability Distributions		
8	Mon. (Oct. 19)	Discrete Probability Distributions	4 & 6	
	Wed. (Oct. 21)	Functions of Random Variables		
	Lab.	Discrete Probability Distributions	Exam 2	
9	Mon. (Oct. 26)	No Class		
	Wed. (Oct. 28)	Statistical Inference & hypothesis Testing	6	
	Lab.	Statistical Inference & hypothesis Testing		
10	Mon. (Nov. 2)	Statistical Inference & hypothesis Testing		
	Wed. (Nov. 4)	Statistical Inference & hypothesis Testing	6	
	Lab.	Statistical Inference & hypothesis Testing		
11	Mon. (Nov. 9)	Linear Regression	8	
	Wed. (Nov. 11)	Linear Regression		
	Lab.	Linear Regression		
12	Mon. (Nov. 16)	Linear Regression		
	Wed. (Nov. 18)	Linear Regression	8	
	Lab.	Linear Regression		
13	Mon. (Nov. 23)	Linear Regression		
	Wed. (Nov. 25)	Thanks Giving		
	Lab.	Linear Regression		
14	Mon. (Nov. 30)	Linear Regression	8	
	Wed. (Dec. 2)	Linear Regression		
	Lab.	Linear Regression	Exam 3	
	Mon. (Dec. 7)	Linear Regression	8	
15	Wed. (Dec. 9)	Review		
	Lab.	Review		
16	Dec. 15 - 21	Final Exam		

Preliminary Schedule, CE264, Fall 2009

Outline of Course CE264: Data Analysis for Civil Engineering Applications

Chapter 1: Introduction of Statistics & Definitions:

• Types of Data and Variables; Frequency; Frequency Distribution; Histogram; Scattergram; Main Descriptors; Uncertainty & Outliers.

Chapter 2: Fundamental of Probability Models:

- Sample Space; Events; Venn Diagram & De Morgan's Rule.
- Probability of an Event; Properties & Rules of Probability; Conditional Probability; Total Probability.

Chapter 3: Analytical Models for Random Phenomena:

- Random variables; Analytical Descriptors (Mean, Expectation, Variance, Standard Deviation)
- *Continuous Probability Distribution:* Probability Density Function; Normal (Gaussians) Probability Distribution; Properties of Normal Curve; Lognormal Distributions; Exponential Distribution.
- *Discrete Probability Distribution*: Probability Mass Function; Binomial (Bernoulli) Probability; Continuity correction for Binomial Probability; Poisson Probability; Hypergeometric Random Distribution; Gamma Distribution; Geometric Distribution.

Chapter 4: Function of Random Variables:

• Concept of Sampling Distributions; Impact of Sample Size on Sampling Distribution; Sampling Distribution of the Mean and the Central Limit Theorem.

Chapter 6: Inferences from Observational Data:

- An Estimator or Point estimator; Confidence Interval; Estimation of Population Mean, Proportion, and Variance; Student's *t* Distribution; Chi-Square Distribution.
- Confidence Interval and Hypothesis Testing; Null and Alternative Hypotheses; Test Statistics and Rejection Regions; Critical Values; One- or Two-Tailed Test; Standardized Test Statistics; Testing Population Mean, Proportion, and Variance.
- Determining Target Parameters; Comparing Two Population Means, Proportions, and Variances;

Chapter 8: Regression and Correlation Analysis:

- Introduction to the Regression Model; Parameters of the Simple Linear Regression Model; Linear Regression Model Assumptions; Measuring Variability around the Least Square Line; Correlation Coefficient; Covariance; Coefficient of Determination; Confidence Interval in Regression; Interference about the Slope of Regression Line & the Correlation Coefficient; Confidence Intervals for Mean and Prediction Values; Residual Analysis.
- General Multiple Regression Model; Computation of Coefficients of the First Order Multiple Regression Model using Least Square Method; Multi-Linear Regression Model.
- Non-linear Regression.